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We analyse the variations of the director n and of the scalar order parameter S of a nematic
liquid crystal in contact with a surface which imposes a sinusoidal boundary distortion. The
amplitude A of the surface pro® le and the corresponding wavelength l vary in ranges
compatible with the elastic regime Aq< 1, where q =2p/l is the surface wave vector. The
analysis is carried out by means of a Landau expansion of the free energy where both n and
S gradients are taken into account. We obtain an evident coupling between S and n in a
nematic surface layer of thickness jS of the order of a few hundred AÊ ngstroms. Moreover S
can vanish close to the surface if the distortion imposed by the boundary conditions is strong
enough. The numerical approach presented in this paper is based on the ® nite element method.

1. Introduction microtextured substrates [7]). Simple elastic models,
based on the Berreman approach [8], give unsatisfactoryThe orientation of a liquid crystal (LC) by solid

substrates is an invaluable tool for researchers working results when strong deformations are present, due to the
fact that a local decrease of the nematic order parameteron mesomorphic materials [1]. The preparation of a

LC specimen often requires a knowledge of speci® c S is expected [9, 10]. This is certainly the case for SiO
coated plates [11], but similar e� ects are expected evensurface treatments to control the interaction between

the LC molecules and a solid substrate [2]. Many kinds close to edges and valleys of micrometric bi-gratings.
Numerical investigations of the e� ect of the couplingof LC± solid interactions, such as steric and anisotropic

van der Waals forces, are responsible for these macro- between the order parameter S and the NLC distortion
scopic orientating phenomena that are of both practical were carried out a few years ago by considering the
and conceptual interest. Several practical methods are unidimensional problem of samples with boundary con-
known for achieving a controlled LC± alignment on a ditions which impose a surface order parameter di� erent
solid substrate (homeotropic, planar or tilted monostable from that of the bulk [12, 13]. In ref. [12], two cases of
orientations, as well as multistable easy axes can be surfaces increasing or decreasing S on the boundary
obtained), but the competition of the intrinsic LC-ordering layers were taken into account, showing that, even by
and the surface induced e� ects is a complex problem considering in® nitely strong anchoring conditions on
that is a relevant research subject even for the simplest the boundary walls, the spatial variation of S is then
case of nematic LC (NLC) [3]. equivalent to a ® nite anchoring energy, which is due to

Due to the increasing interest in bistable devices based a bulk contribution from the surface layer where = S Þ 0.
on NLC surface properties, the problem of the in¯ uence In ref. [13], starting from experimentally measured
of the surface morphology on the NLC bulk alignment orientational distributions of NLC molecules on mica
is, at present, very important. In fact, it has been substrates, a very low value of S was found and its
demonstrated that bistable anchoring conditions for in¯ uence on the nematic distortion in the interfacial
nematics can be obtained both on sub-micrometric region was investigated.
anisotropic roughsubstrates (oblique SiOcoating) [4, 5] In this paper, we present the results of a numerical
and by means of periodic micrometric surface structures study concerning the NLC alignment induced by a
(bi-gratings made with photosensitive materials [6] or sinusoidal boundary surface, in a bi-dimensional case

where out-of-plane solutions are not allowed. The present
investigation concerns the general case where both*Author for correspondence; e-mail: barberi@® s.unical.it
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1346 V. Mocella et al.

the distortion and the order parameter variations are assumption of a slave-order-parameter surface function.
The important point is that from the statistical point ofconsidered at the same time in a planar cell of ® nite

thickness in the presence of a distorted nematic texture. view S and n are two independent quantities. Hence, at
the surface we can assume n ® xed and S free.It represents an extension of an analytical study published

a few years ago [14]. The model can be generalized by considering a ® nite
surface free energy characterized by an easy axis and an
easy surfaceorder parameter. In this manner, the numerical2. The physical problem

The geometry of the problem is shown in ® gure 1. problem is more complicated because the boundary
conditions are of the mixed type. This means that theyThe boundary surface is assumed to have a sinusoidal

pro® le involve thevalues of the functions and of their derivatives
at the surfaces [9], but from the physical point of view

z = A sin(qx) (1) the problem remains the same. We limited our analysis
to the simpler problem of a ® xed surface value of hwhere q = 2p/l is the surface wave vector, z is the normal

to the average surface z = 0 and the NLC is in contact [for de® nition see below] and a free surface value for S,
since we focus our attention on the in¯ uence on S(z)with the upper side of the surface. The amplitude A of

the surface pro® le varies in the range 5± 20AÊ and its and h(z) of an imposed deformation.
In the bulk, far enough from the geometrical surface,wavelength l is assumed to be in the range 200± 500AÊ

to ensure that all calculations are carried out in the at a distance d much larger than the nematic± isotropic
correlation length j [1], the alignment is assumed to beelastic regime Aq< 1 [8, 9]. As in ref. [14], the surface

director is assumed to be exactly aligned along the planar (parallel to the x-axis): hb u lk = 0, where h is the
angle between the nematic director n and the x-axisboundary sinusoidal pro® le (® xed surface distortion)

whereas S is completely free at the surface. We note that associated with the spatial variations of S and h induced
by a surface modulation of the average molecular orien-this assumption is not self-contradictory. In fact from

the symmetry point of view, a nematic liquid crystal is tation. It should be noticed that, as we are interested in
the coupling of S with variations of n, imposing acharacterized by the traceless tensor order parameter

Qij =S(n inj Õ 1/3dij ). The scalar order parameter S is homeotropic alignment (hb u lk =p/2) or any other uniform
alignment, instead, would not have changed the naturegiven by S = 3/2 7 (n¯ a)2 Õ 1/38 , where a is the molecular

major axis and the brackets 7 8 mean a statistical of the physical results.
As, in the one elastic constant approximation, thereaverage. In a similar manner, n is the statistical average

of the molecular direction of the major molecular axis. is no direct coupling term between the order parameter
variation and the director distortion [10], the NLCThe physical anisotropies are proportional to S, and the

optical axis coincides with n. Practically we work on the volume free energy density can be written as

F = g(S)+
3

4
L1 (= S)2 +

9

4
L1 S2 (= h)2 (2)

where L1 is the nematic elastic constant. The choice
of working in the one elastic constant approximation
simpli® es the description of the problem, but the lack of
direct coupling between the gradients of h and S does
not in¯ uence our analysis because we are investigating
a sample with a distorted nematic texture. In this case,
a spatial change of S always implies a h variation. The
direct coupling between the gradients of h and S is
relevant only when the elastic anisotropy is pronounced,
whereas our analysis holds for all nematic materials,
even close to the nematic± isotropic transition temper-
ature (as assumed in the following for this problem),
where the elastic anisotropy tends to vanish. The direct

Figure 1. Geometry of the ideal sample. Nematic molecules are coupling between the gradient of S and the gradient of
assumed to be exactly aligned along the lower boundary h is an additional source of anchoring and it is expected
sinusoidal pro® le. A and l are, respectively, the amplitude to change the pro® le h(z), as discussed by Sullivan et al.and the wavelength of the sinusoidal distortion. The

[16, 17]. However, as has been shown recently [18],nematic alignment at a distance d from the lower surface
is assumed planar. the direct coupling plays an important role only if the
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1347Nematic surface distortion and OP coupling

sample is characterized by the same easy axes on the into (4) and solving the system of equations
two surfaces. In all the other cases, the initial distortion
is the most important source of the subsurface variations
of h(z) and S(z).

qJ

qA i
= 0 i = 1, 2, ¼ , N

qJ

qB i
= 0 i = 1, 2, ¼ , N

(6)In equation (2), g(S) is the nematic free energy density
when S and h are uniform. It can be expanded in the
Landau± de Gennes form in terms of S:

which are the necessary conditions in order for J to
be at a minimum. A mesh of triangular elements isg(S)= g(0)+

1

2
a(T Õ T *)S2 Õ

1

3
BS3 +

1

4
CS4 (3)

generated automatically over the integration region R

shown in ® gure 2. A denser element subdivision has
where g(0 ) is the free density energy of the isotropic phase been implemented in the neighbourhood of the wall
of thenematic material; a, B and C are phenomenological surface, where the larger variations of the functions S
parameters independent of the temperature T, and T * and h are expected. The shape functions are de® ned
is a temperature close to the nematic± isotropic transition locally in every element (triangle) and vanish elsewhere.
temperature TC . Under this assumption, the upper limit N of the sums

The following values, comparable to those avail- in equation (5) coincides with the number of knots
able in the literature [7, 19, 20], are assumed for associated to an element. In order to make sure that
the phenomenological coe� cients a, B, C and L1 : the values of the functions along the common side of
a=0.065 Ö 107 ergcmÕ

3 K, B=C=2.857 Ö 106 ergcmÕ
3 , two adjacent triangles match across the border of two

L1 = 10Õ
6 dyn. We ® xed T Õ T* = 0.5 K. With the given elements (C0 continuity), one can introduce a linear

values for these physical parameters, one can easily ® nd approximation scheme, and particularly the so-called
that, in the bulk far enough from the surface, where S and simplex elements [23]. As a consequence, the coe� cients
h are constant, F (S) has a minimum for S = Sb u lk = 0.65, (also called k̀not variables’ ) A i and B i are assigned the
which has been assumed as the bulk value of S for function values in the knot points. The system (6) is
our calculations and which is compatible with the non-linear in the variables A i and B i and has been
experimental values of S for common nematics [1, 20]. solved by means of a non-linear least-square optimization

The variational statement of the problem, which is algorithm.
based on the principle of minimum energy, was taken
as a starting point for the resolution method adopted in
this work (see [21] as a general reference). This method
has already been described in [22] and will only be
brie¯ y recalled here. It consists in ® nding approximate
solutions of the functions S(x, z) and h(x, z), minimizing
the total free energy J (S, h) of the NLC inside a given
region R:

J (S, h)=PR
F (S, h)dx dz. (4)

The basic idea of the ® nite element method (FEM) is
to divide the region of interest into small sub-regions
(elements) and to approximate the solution functions
over each element (piecewise approximation). Following
this method, solutions S and h are sought of the type:

S = �
N

i= 1

N i(x, z)A i and h = �
N

i= 1

N i(x, z)B i (5)

Figure 2. The integration region used in the numerical calcu-
lations with the generated mesh of triangular elements.where the N i(x, z) are the so called shape functions,
Note the mesh re® nement leading to a higher elementwhich have to be suitably chosen, and the A i and B i density in the neighbourhood of the wall surface, where

are 2N unknown coe� cients, which can be determined a larger distortion is expected. Units of horizontal and
vertical axes are centimeters.numerically after substituting equations (2), (3) and (5)
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1348 V. Mocella et al.

3. Results and discussion

The numerical solutions for S(z) and h(z) are actually
calculated in the interval [0, zm ax =d], with d =3 Ö 103 AÊ .
Figures 3 to 5 show the variations of the NLC scalar
order parameter S and the NLC alignment h with the
distance from the boundary surface, for sinusoidal pro-
® les of amplitude A ranging from 5 to 20AÊ . Every plot
is drawn for the wavelengths l= 200, 300, 400 and
500AÊ . In ® gures 3 (a) and 3(b), S(z) and h(z) are plotted
for A = 5AÊ . Note that these plots and the following
ones for A = 10 and 20AÊ are traced by considering the
variations of S(z) and h(z) along a vertical line that
crosses the point of maximum slope of the sinusoidal
pro® le of ® gure 1. This is the region where the nematic
distortion is at a maximum and, hence, where the S± h

coupling is expected to be less important. Moreover, we
veri® ed that the S± h coupling is only weakly dependent
on the x-coordinate. One may notice that the surface
order parameter Ss u r f = S(0) is always lower than that
for the bulk, Sb u lk = S(d ). The associated decay length

(a)

(b)

Figure 4. Plots of S(z) (a) and h(z) (b) for sinusoidal surface
pro® les of amplitude A =10AÊ and wavelengths l=200,
300, 400 and 500AÊ .

jS is about 2 Ö 10Õ
6 cm= 200AÊ . This can be considered

as the thickness of the interfacial region where the
nematic properties are di� erent from those of the bulk.
As expected, jS is of the same order of magnitude as the
coherence length j =[L1 /a(T Õ T*)]1 /2 # 125AÊ associated
with the nematic order [1]. Figure 3(b) shows that the
decay length of h(z), jh, is shorter than jS . This behaviour
can be explained by considering that fast variations of
h are favoured by the low nematic order in the interfacial
region [13]. Far enough from the lower boundary
surface, the distortion of the nematic is practically linear,
as expected. The di� erent starting points for the h(z)

plots are due only to a geometrical e� ect: as the ampli-
tude A of the surface distortion is ® xed and each curve
corresponds to a di� erent wavelength l, the maximum
slope hs u r f of a pro® le depends on l.

The h variation along the surface is proportional to

(a)

(b)
A and 1/l and, on the other hand, it is coupled to theFigure 3. Plots of S(z) (a) and h(z) (b) for sinusoidal surface
S variation along the z-direction. This variation occurspro® les with amplitude A =5AÊ and wavelengths l=200,

300, 400 and 500AÊ . over a length which can be one order of magnitude
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1349Nematic surface distortion and OP coupling

Figure 6. Plots of DS = (Sb u lk Õ Ssu r f ) vs. the wavelength l of
the sinusoidal surface pro® les for the three cases A =5,
10 and 20AÊ .

vanishes. When l= 250AÊ , we obtain Ss u r f # 0.1. It is
interesting to note that the starting slope of S(z),

dS/dz |z= 0 is lower than the maximum one, enlarging
the size of the interfacial region.

Figure 6 reports DS(l) for the three cases considered,
A = 5, 10 and 20AÊ . It is evident that even quite a small
boundary distortion (such as that usually considered in
the limit of a pure elastic description) as in the case
A = 20AÊ , l= 400AÊ , induces a meaningful variation of
Ss u r f with respect to Sb u lk . A direct consequence is that
further e� ects due to local nematic order variation [24]
should then be included in the description of the nematic
state close to the boundary surface.

(a)

(b)

Figure 5. Plots of S(z) (a) and h(z) (b) for sinusoidal surface 4. Conclusionpro® les of amplitude A =20AÊ and wavelengths l=250,
Although it has been known for a quite long time that300, 400 and 500AÊ .

the coupling between the spatial variation of S and h

in¯ uences the interfacial layer of a nematic liquid crystal,
inducing deviations from the bulk linear distortion inlarger than the variation along the x-axis. These two

competitive e� ects may give rise tonumerical instabilities the absence of any external ® eld, these e� ects were
considered to be relevant only in presence of very strong(like unrealistic oscillations) in the behaviour of h in

extreme cases where large values of A are combined distortions (such as close to a defect or to very rough
substrates [11]). Our results provide evidence that largewith low l values, involving dramatic variations of S

close to the boundary surface. In our investigations, this order parameter gradients are also expected close to
relatively smooth substrates, reducing the range ofturned out to be the case for A = 20AÊ and l= 200AÊ . It

should be added that the value of Ss u r f is not a� ected, application of pure elastic models where S variations
are not taken into account.however, by these instabilities (see ® gure 6).

Figures 4(a) and 4(b) report the S(z) and h(z) curves This result is not completely obvious because S is
de® ned by means of an average over small but macro-in the case of A = 10AÊ . The behaviour is similar to the

previous case, but the di� erence DS = (Sb u lk Õ Ss u r f ), scopic volumes of nematic. A rough surface, characterized
by a strong local anchoring, increases the dispersion offor a given l, is larger. In the case l= 200AÊ , which

corresponds to a stronger nematic surface distortion, the molecular orientations onto the surface itself, and
hence reduces the surface order. Nevertheless, this e� ectSs u r f reduces to about 0.23, i.e. to a value about three

times lower than Sb u lk . is related to the size of the volume where the averaging
process is carried out, but in our analysis this size doesPlots of S(z) and h(z) for A = 20AÊ are shown in

® gures 5 (a) and 5(b). For l= 200AÊ , which is not reported not appear explicitly. In fact, it is implicitly de® ned by
the coe� cient of the Landau± de Gennes developmenthere for the reasons described above, Ss u r f practically
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[9] Barbero, G., and Durand, G., 1991, J. appl. Phys.,we used. We recall that this description is suitable only
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